

END PLATES

BENEFITS OF THERMOPLASTIC-BASED SOLUTIONS

- Electrical & thermal insulation
- Weight savings vs aluminum
- Elimination of secondary operations

APPLICATION REQUIREMENTS

- High strength
- High stiffness
- · V0 flame retardance
- Chemical resistance

MATERIAL REQUIREMENTS

- V0 flame retardance (in most cases)
- · High strength & stiffness
- Chemical resistance

POTENTIAL MATERIALS	NOTES
STAMAX™ 30YH570 (FR 30%LGF-PP)	Higher chemical resistance vs CYCOLOY™ C6600; high stiffness; higher impact vs PPc H1030
SABIC® PPc H1030 (FR 30%SGF-PP)	Higher chemical resistance vs CYCOLOY™ C6600; high stiffness
VALOX™ 8090 (50%GF PBT/PET)	Non FR; high HDT; higher stiffness vs STAMAX™ 30YH570
CYCOLOY™ C6600, CY6310 (FR PC/ABS)	For side plates requiring less stiffness and high ductility; CY6310 for high heat

This application solution has been developed and verified under SABIC's BLUEHERO™ initiative—an expanding ecosystem of materials, solutions and expertise designed to help accelerate the shift to electrification. Through BLUEHERO, SABIC offers a global team of specialists with expertise in the design, development and testing of material solutions for EV battery systems and related EV components.

