

CELL CARRIERS

BENEFITS OF THERMOPLASTIC-BASED SOLUTIONS

- Adhesive compatibility
- Thermal barrier
- · Dimensional stability
- Thin-wall parts

APPLICATION REQUIREMENTS

- Flexibility and impact
- · Flame resistance
- Adhesive compatibility

MATERIAL REQUIREMENTS

- High flow
- Good impact
- · Dimension stability
- V0 FR at 1.5 mm or lower

POTENTIAL MATERIALS	NOTES
CYCOLOY™ C6600 (FR PC/ABS)	V0 @ 1.5 mm ; enhanced chemical resistance vs LEXAN™
CYCOLOY™ C2950 (AMR), CY6310 (EUR) (FR PC/ABS)	High flow impact-modified; injection moldable
CYCOLOY™ C2950 (PC/ABS)	Extrusion & stamping / thermoforming
LEXAN™ 915R (FR PC)	V0 @ 1.1 mm
LEXAN™ 3412ECR (FR 20%GF PC)	High stiffness
LEXAN™ 925 (FR PC)	V0 @ 1.0 mm

This application solution has been developed and verified under SABIC's BLUEHERO™ initiative—an expanding ecosystem of materials, solutions and expertise designed to help accelerate the shift to electrification. Through BLUEHERO, SABIC offers a global team of specialists with expertise in the design, development and testing of material solutions for EV battery systems and related EV components.

