CHEMISTRY THAT MATTERS™

ELEVATE THE DESIGN OF ELECTRONIC DEVICES WITH SABIC'S ULTEM™ DT1820EV RESIN

Consumer Electronics companies often use combinations of glass and metal in their flagship products to provide a high-end, differentiated design to the consumer. However, designing with metal can result in potentially high costs and long production cycles. ULTEM DT1820EV resin may provide an alternative to metal – a lower cost solution that offers comparable performance and similar appearance.

POTENTIAL ADVANTAGES OF ULTEM DT1820EV RESIN FOR PRODUCT DESIGN

	High flowability for thin-wall design
	Excellent colorful metallization using Physical Vapor Deposition (PVD)
\bigotimes	High surface hardness with good anti-scratch performance
	High gloss surface with high modulus
	Inherent flame retardancy
	Good UV and chemical resistance

PERFORMANCE ADVANTAGES OF ULTEM™ DT1820EV RESIN

High performance ULTEM DT1820EV resin supports thin-wall, high gloss designs and is an excellent candidate for metal replacement thanks to its surface hardness, good mechanical performance and resistance to UV and chemicals.

HIGH FLOWABILITY FOR THIN-WALL DESIGN

Well-suited for thin-wall and complex design with weld line elimination

HIGH GLOSS SURFACE WITH HIGH MODULUS

ULTEM DT1820EV resin has high surface gloss with low surface roughness

HIGH SURFACE HARDNESS

ULTEM DT1820EV resin shows good anti-scratch and high surface hardness

GOOD CHEMICAL RESISTANCE

ULTEM DT1820EV resin passes the anodization process and has good resistance to sunscreen

COLORFUL METALLIZATION USING PHYSICAL VAPOR DEPOSITION (PVD)

Because of its high modulus and surface hardness, ULTEM™ DT1820EV resin is well-suited for metallization using sputtering PVD. The excellent appearance and good mechanical properties can help to replace metals and may reduce production costs.

ULTEM DT1820EV RESIN IS WELL SUITED FOR PVD SPUTTERING

Metallization (NCVM) used with glass fiber filled polycarbonate (PC). PVD provides a better metallic appearance than NCVM and since color is determined by the PVD layer, this method can eliminate the 3 coating steps used in NCVM. In addition, ULTEM DT1820EV resin's high heat resistance enables the use of higher temperatures in the PVD process which can improve adhesion and cycle time.

SIMPLIFICATION OF THE METALLIZATION PROCESS

BENEFITS OF ULTEM DT1820EV RESIN IN COMBINATION WITH PVD METALLIZATION

High gloss surface with excellent metallic appearance		Glass fiber filled polycarbonate can have a lower quality metallic appearance due to floating fibers
High modulus and hardness with excellent PVD process compatibility		Polycarbonate is more easily scratched and the metal layer may crack due to substrate deformation
High heat resistance		ULTEM resin supports high temperature PVD with better adhesion and shorter cycle time
Small difference in coefficient of thermal expansion (CTE) with PVD layer	>>	ULTEM resin gives excellent adhesion between PVD layer and the thermoplastic substrate

KEY MATERIAL PROPERTIES ULTEM™ DT1820EV RESIN

KEY MATERIAL PROPERTIES:	UNIT	STANDARD	ULTEM DT1820EV RESIN			
Mechanical properties						
Flexural Modulus, 1.27mm/min	MPa		3190			
Flexural stress at break, 1.27mm/min	MPa	ASTM D790	166			
Tensile modulus, 50mm/min	MPa		3150			
Tensile stress at break, 50mm/min	MPa	ASTM D638	80			
Tensile strain at break, 50mm/min	%		25			
Pencil hardness, 1kg	-	ASTM D 3363	F			
Impact properties						
Notched impact, 23°C	J/m	ASTM D256	40			
Un-notched impact, 23°C	J/m	ASTM D4812	2097			
Instrumented Dart Impact Total Energy, 23°C	J	ASTM D3763	68			
Thermal						
HDT, 0.45MPa, unannealed	°C	ASTM D648	182			
Vicat soften temp, Rate B/50	°C	ASTM D1525	184			
CTE, 23°C to 150°C, flow	1/°C	ASTM E831	55			
CTE, 23°C to 150°C, xflow	1/°C	ASTM E831	58			
Physical properties						
MFR, 337°C/6.7kg	g/10min	ASTM D1238	53			
Specific gravity	-	ASTM D792	1.285			

SABIC ISCC+ CERTIFIED RENEWABLE ULTEM RESIN SOLUTIONS

A new portfolio of bio-based ULTEM resins that delivers a lower carbon footprint while offering the same high performance and processability as incumbent ULTEM materials is now available.

CONTACT INFORMATION SABIC SPECIALTIES BUSINESS

AMERICAS E: Specialties.Americas@sabic-hpp.com T: +1 800 845 0600 ASIA PACIFIC E: Specialties.Asia@sabic-hpp.com T: +86 400 833 1033

EUROPE E: Specialties.EMEA@sabic-hpp.com T: +3612883040

SABIC MATERIAL FINDER Find the right Specialties material for your application

ULTEM, SILTEM, EXTEM

DISCLAIMER: ANY SALE BY SABIC, ITS SUBSIDIARIES AND AFFILIATES (EACH A "SELLER"), IS MADE EXCLUSIVELY UNDER SELLER'S STANDARD CONDITIONS OF SALE (AVAILABLE UPON REQUEST) UNLESS AGREED OTHERWISE IN WRITING AND SIGNED ON BEHALF OF THE SELLER. WHILE THE INFORMATION CONTAINED HEREIN IS GIVEN IN GOOD FAITH, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OF FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right. SABIC and brands marked with ™ are trademarks of SABIC or its subsidiaries or affiliates, unless otherwise noted.

© 2023 Saudi Basic Industries Corporation (SABIC). All Rights Reserved. Any brands, products or services of other companies referenced in this document are the trademarks, service marks and/or trade names of their respective holders.